В треугольнике АВС известно, что АС = 7, ВС = 24, угол С равен 90°.
Найдите радиус описанной около этого треугольника окружности.

Задание 15 Вариант 44-2025

РЕШЕНИЕ:

Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы этого треугольника, а радиус равен половине гипотенузы.

Найдем гипотенузу по теореме Пифагора: с2 = а2 + b2

с2 = 242 + 72 = 576 + 49 = 625

с = 25

R = ½ АВ = ½ *25 = 12,5

Ответ: 12,5